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We have derived approximate analytical expressions to estimate the nonsteady 
values of temperature and thermal bending for multilayered plates with inter- 
nal cooling. 

Great thermal stresses and strains may be generated under the action of high thermal 
loads in the heat-conducting walls of physicoenergetic installations. In order the reduce 
these strains and stresses, we make use of microchannel (porous) cooling systems which are 
brought as close as possible to the heated surface [1-6]. In such an event, the struzture 
of the wall is reminiscent of a three-layered plate of thickness 6, including: i) a thin 
heat-receiving layer of thickness 6z; 2) a cooled layer of thickness h, with arbitrarily 
shaped microchanne!s (pores in communication) through which the coolant moves [2-6]; and 
3) a comparatively thick base of thickness 6~, through which is effected the removal from 
and supply to of the coolant to the cooled layer and the plate mountings. The total ~hick- 
hess of the heat-receiving wall and of the cooled layer (~i + h), as a rule, does not ex- 
ceed 0.1 6. In the case of large-scale cooled plates, in order to reduce their weigh~, the 
base is lightened through utilization of a variety of honeycombed or foam structures 17-10]. 

Thermomechanical calculation of such nonuniform structures is extremely complex and 
calls for the use of considerable simplifications, even when using numerical methods to 
solve the equations of thermoelasticity. Estimates have been obtained in [Ii] for the non- 
steady thermal bending of solid plates not subjected to cooling. 

It is purpose of the present study to derive analytical expressions convenient for var- 
ious estimates of the nonsteady values of thermal bending in multilayered plates with inter- 
nal cooling, where the thermal load is applied from without. 

In order to validate the approximate method of calculating displacements, let us esti- 
mate the characteristic time required for the heating of a cooled porous layer when a con- 
stant thermal load is applied. Owing to the thermal conductivity of the skeletal stricture 
of the cooled layer, a portion of the heat absorbed by the first wall penetrates down to the 
base, the heating of the latter taking up a greater portion of the time than the heating of 
the thin first wall and of the cooled layer. It was demonstrated in [4] that the time re- 
quired to establish a steady heat-exchange regime in the porous layer is determined by the 
characteristic times for the heating of the skeleton, i.e., ~s = Cs/~v and ~E = CE/= v for 
the liquid. Since the optimum porosity of the channel (porous) cooling systems is close to 
50% [4] and the quantity ~v in the case of water cooling, as a rule, exceeds i0 v W/(m3.K), 
then for the majority of materials and structures forming the porous layer the times ~E 
T s < 0.2 sec, i.e., are rather small. If the duration of the thermal effect is small in com- 
parison with Ts, porous cooling is useless [4]. However, if the duration of the thermal ef- 
fect is significantly greater than the time Ts, the deformation of the plate depends signifi- 
cantly on the nonsteady temperature profile in the base, into which the heat has penetcated 
as a consequence of the conduction of heat from the skeleton of the pooled layer. It is pre- 
cisely this case that we examined below. 

According to [5], the influence exerted by a porous cooled layer functioning as a heat 
sink on the heat-receiving wall and base can be characterized by the heat-transfer coeffici- 
ent's ~i of the first wall and ~0 for the base, these being related to the volumetric ~rans- 
fer of heat ev from the uniform porous layer by the following expressions: 
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It follows from (i) that when av = const, with an increase in the thickness of the cooled 
layer, the transfer of heat from the first wall reaching the limit ~,, while the heat 
transfered from the base increases exponentially (Fig. i). The quantity ~0 is convenient 
from the standpoint that it allows us for a given external uniform heat load q immediately 
to estimate the steady-state temperature of the base: T o = TZ + q/a 0. For more complex 
structures, the average quantity a0 must necessarily be determined by experiment. 

Thus, with heating durations of t ~ Zs and ~s the temperature of the base to which the 
cooled porous layer is attached and that of the heat-receiving wall are virtually coincident 
with the temperature state of a uniform solid plate whose surface z = 0 is heated by a flow 
of heat with density q and is simultaneously cooled by means of a cooling heat carrier with 
a heat-transfer coefficient of ~0. The nonsteady distributionof temperature in such a 
plate, with uniform heating by a flow of heat with density q, W/m 2, is described by the fol- 
lowing heat-conduction equation: 

ar= l (2) 
Oz 2 a Ot 

with the boundary conditions 

T = TZ = const when f < 0; (3) 

__~ OT 
@z =q - - .~o (T - -Ts  when Z = O, ~/>0; (4) 

(5) aT ~ = O. 
az ~=6, 

The solution of this boundary-value problem for q = const has the form 

T (z, t) = T~ + -  q - -  C~ s~ ~. ~ tg ~ + cos ~n exp(-- ~ Fo). (6) 
~0 ~ 1  

Here ~n represents the roots of the equation ~ntan~n = Bi; Bi = ~062/~; 

2Bi 
C. = ~ + B~ + 2Bi sin 2 ~ + (~ - -  B~) sm 2~J2~.' " ( 7 ) 

The derived solution found in (6) exhibits the following singularities. If the thermal 
load is constant and acts for an unlimited length of time, the plate will pass, over time, 
from one isothermal state (T = Ts when t = 0) to another (T = Ts + q/a o as t + ~). The temp- 
erature of the face surface z = 0 of the plate is stabilized most quickly. The characteris- 
tic time within which the surface temperature reaches the asymptotic level Ts + q/a0 is T ~ P 
12/a a02, which corresponds to the Fourier number Fo = i/Bi 2. Hence, it follows that to the 
extent that the Blot number exceeds I, the earlier the plate surface temperature becomes 
stabilized. Thus, with i = i0 W/(m'K), a > i0 -s m2/sec, a 0 > i04 W/(m2-K), which is commen- 
surate with the time required to heat the cooled layer. 

When subjected to the action of a nonsteady transverse temperature profile such as that 
presented in (6), the free plate will bend in the direction of the heat flow. The only possi- 
bility of analytically evaluating the thermal bending of this plate is offered by the theory 
of thin plates [3, 4]: 
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Fig. 2. Variation in plate bending over time as a function of the Biot num- 
ber on application of a constant thermal load from the pooled side: i) Bi = 
0; 2) i; 3) i0; 4) i02; 5) 103; 6) I0 ~. 

Fig. 3. The effect of the thickness of the pooled porous layer on the ratio 
of maximum bending deformation (i0) to steady deformation [3, 4] of a pooled 
three-layered plate of molybdenum when ~i = 1 mm, 6 = 200 mm, ~s = 43 W/(m • 
K), av = I0~ W/(m3"K) (i) and 3'107 W/(m3.K) (2). 

TABLE i. Value of the Complex ~]/~for a Number of Materials, Based on the 
Data from [4] 

Material ~ rE, Io-~ m/K s~c Material ~ Y~-, 10-~ m/K s~ 

Copper 
Beryllium 
Molybdenum 
Tungsten 

18.1 
8.2 
3.6 
3.4 

Silicon 
Silicon carbide 
NKD Invar 32 

2.4 
1.1-3.1 

0.09 

~2 

f+) ) % e n ~  COo , (oo = ~3 T ( z )  - - -  z dz, 
2 

o 

where  ~0 r e p r e s e n t s  t h e  d i r e c t i o n  o f  p l a t e  b e n d i n g  ( t h e  d i f f e r e n c e  be tween  t h e  a x i a l  d i s -  
p l a c e m e n t s  a t  t h e  c e n t e r  f rom t h o s e  a t  t h e  edge  o f  t h e  p l a t e ) .  I f  we s u b s t i t u t e  (6 )  i n t o  
( 8 ) ,  we o b t a i n  t h e  change  in  t h e  d i r e c t i o n  o f  t h e  bend o v e r  t i m e :  

--  . ~ ~- ~ e x p ( - - ~ ,  o). 
~* ~ 1  ~n 2 Bi cos Pn ) 

He re  %.~ = Bqbf /4~  r e p r e s e n t s  t h e  d e f l e c t i o n  o f  t h e  u n c o o l e d  p l a t e  in  t h e  q u a s i s t e a d y  r e g i m e  
[ 1 1 ] ,  in  which  a p a r a b o l i c  t e m p e r a t u r e  p r o f i l e  i s  e s t a b l i s h e d  t h r o u g h  t h e  t h i c k n e s s  o f  t h e  
p l a t e .  The r e s u l t s  f rom c a l c u l a t i o n s  c a r r i e d  o u t  in  a c c o r d a n c e  w i t h  f o r m u l a  (9 )  a r e  shown 
in  F i g .  2. With  Bi = 0 ( t h e  c a s e  o f  an u n c o o l e d  p l a t e  has  been  a n a l y z e d  in  d e t a i l  i n  [ 1 1 ] )  
t h e  b e n d i n g  i n c r e a s e s  a s  h e a t i n g  p r o c e e d s ,  i n i t i a l l y  a s  ~0 : ~ , 1 2 F o ,  and t h e n  w i t h  Fo ~ 0 .3  
t h e  b e n d i n g  i s  s t a b i l i z e d  a t  a l e v e l  o f  ~ , .  

An e x a c t  s o l u t i o n  was i n i t i a l l y  d e r i v e d  in  [12] f o r  t h e  s t e a d y  t h e r m a l  d e f o r m a t i o n s  o f  
t h e  end f a c e  on a c y l i n d e r  o f  f i n i t e  d i m e n s i o n s .  I t  f o l l o w s  f rom t h i s  s o l u t i o n  t h a t  ' e i t h  
u n i l a t e r a l  h e a t i n g  and c o o l i n g  o f  t h e  c y l i n d e r ,  where  t h e  o p p o s i t e  f a c e  i s  i n s u l a t e d  a g a i n s t  
h e a t ,  t h e  s t r a i n s  g e n e r a t e d  w i t h i n  t h e  f a c e  s u b j e c t e d  t o  s i m u l t a n e o u s  and c o o l i n g ,  as  a min -  
imum, exceeds by a factor of two the strains calculated in the approximation of the theory 
of thin plates. Therefore, the bending in expressions (8) and (I0) and in (9) for ~, must 
be increased by a factor of 2. 

With large Blot numbers (Bi e i00), characteristic of large-scale plates, the bend is 
initially increased, and then reduced as a consequence of the equalization of the tempera- 
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ture profile in the base. The time required to attain the maximum bending is independent 
of heating and cooling intensity and amounts to Fo = 0.i (more precisely, I/4~), while the 
magnitude of the maximum bending is inversely proportional to the thickness and release of 
heat from the plate: 

3F~b2q 3 ~Q 
fOma x ~ - -  - 

2~&zo 2~ 2 8 %  " (10)  

Here  Q : q~b 2 r e p r e s e n t s  t h e  t o t a l  t h e r m a l  l o a d  o f  t h e  p l a t e .  Thus ,  f o r  t y p i c a l  p a r a m e t e r s  
b = 0.5 m, ~ = 0.2 m, ~ = I0 "s K -z, I : i0 W/(m.i), % : 105 W/(m2.K) (i.e., Bi = 2000), a : 
3.10 -2 m2/sec the time required to attain maximum bending amounts to I00 sec, while the ther- 
mal load which produces a bend of i ~m is 16 kW/m 2. 

With Bi ~ i00 and Fog 0.2 the change in the deflection of the cooled plate is approxi- 
mated by the expression 

(11)  

Hence it follows that for given heat load, effective heat-load time (Fo < 0.i) and plate 
cooling intensity, the minimum bending will be found in that plate fabricated out of mater- 
ial with a minimum m~gnitude for the complex 8 ~ . Among the materials listed in Table i, 
the poorest from this standpoint is copper, while the best is Invar, distinguishing itself 
by its low thermal expansion and thermal diffusivity. 

Thus, the bending of a plate cooled from the heating side initially increases, reaching 
a maximum, and then it diminishes to zero. The base of a multilayer plate behaves in simi- 
lar. fashion, given that it is elastically linked to a thin cooled layer and a heat-receiving 
wall, the only difference being that the bending of the entire plate does not reduce down 
to zero, but to some steady value defined by the temperature profile in the first wall and 
by the cooled layer, and by the rigidity of these last two factors. If we assume the rigid- 
ity of a multilayered plate to be equal to that of the base; it is not difficult to evaluate 
the magnitude of the steady bending from the maximum, as was done in [3, 4]. It follows 
from Fig. 3 that the maximum of the nonsteady bending of the base, i.e., Eq. (I0), may sig- 
nificantly exceed the bending of the entire platein the steady regime [3, 4]. Intensifica- 
tion of heat exchange (an increase in av) in the cooled layer, just as an increase in the 
thickness of the layer (with a constant =v), leads to a reduction in the magnitude of the 
nonsteady bending of the base in a multilayered plate with internal cooling. 

Using expression (i0), (ii), (i), as well as the recommendations dealing with the cal- 
culation of =v and A s from [4], we can study the influence exerted by the rate of coolant 
flow, the properties of the skeletal structure, the liquids and the bases, the geometric 
parameters and the structures of the cooled layer and the base on the extent to which cooled 
plates are subjected to bending under nonsteady conditions. 

NOTATION 

As, thermal conductivity of a porous skeletal structure for the cooled layer; C s and 
Cs heat capacities of the skeletal structure and of the liquid in calculation for a unit 
volume of porous medium; ev, volumetric coefficient of heat transfer in the porous skeletal 
structure of the liquid; .8, coefficient of thermal expansion. 
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AN APPROXIMATE ANALYTICAL SOLUTION FOR A THREE-DIMENSIONAL HEAT-CONDUCTION 

PROBLEM IN AN AIR-RADIATION HEATING SYSTEM 

S. M. Shilkloper UDC 536.2:536.68 

We offer a method for the calculation of the heat transferred from a system, 
this method being based on replacement of the three-dimensional process by a 
combination of a two-dimensional and a one-dimensional process in various 
cross-sectional planes of the heaten channels. 

The need has recently arisen to conduct thermotechnical calculations related to a vari- 
ety of design solutions for air-radiation heating systems, governed by the transfer of heat 
from the surfaces of barriers through whose thicknesses regular channels have been cut~ and 
these are heated by means of circulating hot air (Fig. i). Rigorous formulation of the 
steady-state problem of calculating the influx of heat from such a system reduces to the des- 
cription of the three-dimensional process determined by the Poisson equation, whose precise 
analytical solution can not be obtained. 

We will look for the solution of the formulated problem by taking into consideration 
the following assumptions: the replacement of the three-dimensional process by a combina- 
tion of a two-dimensional process within the plane of the lateral cross section of the chan- 
nels and of the one-dimensional process in the longitudinal cross section of these planes 
will introduce no significant errors; the temperatures ~c and t can be assumed to be con- 
stant for each lateral cross section of the channel, while the quantities tl, t2, e0, al, 
~= , %0, %a, Ca, na can be assumed to be constant within the framework of the entire system; 
we need not take into consideration the heat released from the ends of the barrier, nor need 
we make provision for the relationship between the amount of heat transferred out of the chan- 
nel and the location of the latter. 

We are familiar with at least three means of solving the two-dimensional heat-condJc- 
tion problem in the plane of the lateral cross section of regular linear heating elements. 
Ananikyan's and Pavlov's [i] use of the method of sources and sinks offers no rigorous phy- 
sical basis and is not applicable to the case t I ~ t 2. 

The solution of the Schwartz-Christoffel integrals (the conformal transformation method) 
obtained by Sander [2] for the problem in the plane of the lateral cross section of the chan- 
nels, because of its complexity, leads to resulting differential equations in the longiuudi- 
nal cross-sectional plane that are insoluble in quadratures. 

Most appropriate to the solution of the formulated problem is the Faxen-Rydberg-Huber 
method. In [3] Faxen published a solution for the two-dimensional heat-conduction problem 
related to a uniform panel with regular linear heating elements for the case t I = tz: 

~b k~ - -  kl ~o b ~ ' ~  cos (2~ix/b) ( 1 ) 
zA - ko Y - -  lY[ + 2 ~ + --z ~ i - -  • 

$=1 
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